Publications on contributions to GAP

This is a list publications by CIRCA members, relevant to GAP development (i.e. describing or resulting in direct contributions to GAP system or GAP packages).

Since 2000:

Journal articles

  1. Araújo, J., Bünau, P. V., Mitchell, J. D., and Neunhöffer, M.Computing automorphisms of semigroupsJ. Symbolic Comput.45 (3) (2010), 373–392.
  2. Assmann, B. and Eick, B.Computing polycyclic presentations for polycyclic rational matrix groupsJ. Symbolic Comput.40 (6) (2005), 1269–1284.
  3. Assmann, B. and Eick, B.Testing polycyclicity of finitely generated rational matrix groupsMath. Comp.76 (259) (2007), 1669–1682.
  4. Assmann, B. and Linton, S.Using the Mal\cprime cev correspondence for collection in polycyclic groupsJ. Algebra316 (2) (2007), 828–848.
  5. Behrends, R.Hammond, K.Janjic, V.Konovalov, A.Linton, S.Loidl, H. ‐W.Maier, P., and Trinder, P., HPC‐GAP: engineering a 21st‐century high‐performance computer algebra systemConcurrency Computat.: Pract. Exper.28 (2016),  3606–3636. doi: 10.1002/cpe.3746.
  6. Carlson, J. F., Neunhöffer, M., and Roney-Dougal, C. M.A polynomial-time reduction algorithm for groups of semilinear or subfield classJ. Algebra322 (3) (2009), 613–637.
  7. Dolinka, I., East, J., Evangelou, A., FitzGerald, D., Ham, N., Hyde, J., Loughlin, N., & Mitchell, J. D., Enumeration of idempotents in planar diagram monoids, Journal of Algebra, 522 (2019), 351-385.
  8. Donoven, C. R., Mitchell, J. D., & Wilson, W. A., Computing maximal subsemigroups of a finite semigroup. Journal of Algebra, 505 (2018), 559-596.
  9. de Graaf, W. A.Constructing representations of split semisimple Lie algebrasJ. Pure Appl. Algebra164 (1-2) (2001), 87–107 (Effective methods in algebraic geometry (Bath, 2000)).
  10. Detinko, A., Flannery, D. L., and Hulpke, A.Zariski density and computing in arithmetic groupsMath. Comp.87 (310) (2018), 967–986.
  11. Distler, A. and Kelsey, T.The semigroups of order 9 and their automorphism groupsSemigroup Forum88 (1) (2014), 93–112.
  12. East, J., Egri-Nagy, A., & Mitchell, J. D., Enumerating transformation semigroups, Semigroup Forum, 95(1) (2017), 109-125.
  13. East, J., Egri-Nagy, A., Mitchell, J. D., and Péresse, Y. Computing finite semigroups. Journal of Symbolic Computation, 92 (2019), 110-155.
  14. Hoffmann, R., Linton, S., Regular languages of plus- and minus-(in)decomposable permutations, Pure Mathematics and Applications, 24 (2013) pp 143 — 150.
  15. Holt, D., Linton, S., Neunhoeffer, M., Parker, R., Pfeiffer, M., & Roney-Dougal, C. M., Polynomial-time proofs that groups are hyperbolic. Journal of Symbolic Computation, 104 (2021), 419-475.
  16. Hulpke, A.Conjugacy classes in finite permutation groups via homomorphic imagesMath. Comp.69 (232) (2000), 1633–1651.
  17. C. Jefferson, E. Jonauskyte, M. Pfeiffer and R. Waldecker. Minimal and canonical images. Journal of Algebra, vol. 521, 1 March 2019, pp. 481-506.
  18. C. Jefferson, M. Pfeiffer and R. Waldecker. New refiners for permutation group search. Journal of Symbolic Computation, vol. 92, 2019, pp. 70-92.
  19. Jonušas, J., Mitchell, J. D., and Pfeiffer, M.Two variants of the Froidure-Pin algorithm for finite semigroupsPort. Math.74 (3) (2017), 173–200.
  20. HPC-GAP project, Parallel programming support in GAP. ACM Communications in Computer Algebra. ACM, Vol. 46 (2012), p. 162-163.
  21. A. Konovalov, A. Smoktunowicz and L. Vendramin. On skew braces and their ideals. Experimental Mathematics, 2018.
  22. Linton, S.GAP – Groups, Algorithms, ProgrammingACM Communications in Computer Algebra41 (3) (2007), 108–109 (Issue 161).
  23. Linton, S. A., Pfeiffer, G., Robertson, E. F., and Ruškuc, N.Computing transformation semigroupsJ. Symbolic Comput.33 (2) (2002), 145–162.
  24. Linton, S., Hammond, K., Konovalov, A., Brown, C., Trinder, P. W., Loidl, H. -., Horn, P., and Roozemond, D.Easy composition of symbolic computation software using SCSCP: a new lingua franca for symbolic computationJ. Symbolic Comput.49 (2013), 95–119.
  25. Roney-Dougal, C. M.The primitive permutation groups of degree less than 2500J. Algebra292 (1) (2005), 154–183.
  26. Roney-Dougal, C. M. and Unger, W. R.The affine primitive permutation groups of degree less than 1000J. Symbolic Comput.35 (4) (2003), 421–439.

Conference proceedings

  1. Al Zain, A. D., Trinder, P. W., Hammond, K., Konovalov, A., Linton, S. & Berthold, J., Parallelism without Pain: Orchestrating Computational Algebra Components into a High-Performance Parallel System. 2008, PROCEEDINGS OF THE 2008 INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS. LOS ALAMITOS: IEEE COMPUTER SOC, p. 99-112 14 p.
  2. Araújo, I. M. and Solomon, A.Computing with semigroups in GAP—a tutorial, in Semigroups (Braga, 1999)World Sci. Publ., River Edge, NJ (2000), 1–18.
  3. Behrends, R., Konovalov, A., Linton, S., Lübeck, F. & Neunhöffer, M., Parallelising the computational algebra system GAP. 2010, Proceedings of the 4th International Workshop on Parallel and Symbolic Computation (PASCO ’10). New York, NY: ACM, p. 177-178
  4. Behrends, R., Konovalov, A., Linton, S., Lübeck, F. & Neunhöffer, M., Towards high-performance computational algebra with GAP. 2010, Proceedings of the Third International Congress on Mathematical Software: Kobe, Japan, September 13-17, 2010. Fukada, K., van der Hoeven, J., Joswig, M. & Takayama, N. (eds.). Springer, p. 58-61 (Lecture Notes in Computer Science; vol. 6327).
  5. Dehaye, P-O., Iancu, M., Kohlhase, M., Konovalov, A., Lelièvre, S., Müller, D., Pfeiffer, M., Rabe, F., Thiéry, N. M. & Wiesling, T., Interoperability in the OpenDreamKit project: the Math-in-the-Middle approach. 2016, Intelligent Computer Mathematics: 9th International Conference, CICM 2016, Bialystok, Poland, July 25-29, 2016, Proceedings. Kohlhase, M., Johansson, M., Miller, B., de Moura, L. & Tompa, F. (eds.). Cham: Springer, p. 117-131 15 p. (Lecture Notes in Computer Science; vol. 9791).
  6. Johnson, N., Konovalov, A., Janjic, V. and Linton, S., UPCGAP: A UPC package for the GAP system. 7th International Conference on PGAS Programming Models, 2013, p. 217-221.
  7. Kohlhase, M., De Feo, L., Müller, D., Pfeiffer, M. J., Rabe, F., Thiéry, N., Vasilyev, V., & Wiesing, T. (2017). Knowledge-based interoperability for mathematical software systems. In J. Blömer, I. Kotsireas, T. Kutsia, & D. E. Simos (Eds.), Mathematical Aspects of Computer and Information Sciences: 7th International Conference, MACIS 2017, Vienna, Austria, November 15-17, 2017, Proceedings (pp. 195-210). (Lecture Notes in Computer Science (Theoretical Computer Science and General Issues); Vol. 10693). Springer.
  8. Komendantsky, V., Konovalov, A. and Linton, S.,View of Computer Algebra Data from Coq. 2011,18th Symposium, Calculemus 2011, and 10th International Conference, MKM 2011, p. 74-89.
  9. Komendantsky, V., Konovalov, A. and Linton, S., Interfacing Coq + SSReflect with GAP. 2012, User Interfaces for Theorem Provers 2010 (UITP’10), p. 17-28.
  10. Konovalov, A., Linton, S., Parallel computations in modular group algebras, 2010PASCO 10 : Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, International Workshop 21-23 July 2010, Grenoble, France. New York: ACM, p. 141-149
  11. Linton, S., Finding the smallest image of a set. Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC ’04, ACM, New York, NY, USA (2004), pp. 229-234
  12. Linton, S., Hammond, K., Konovalov, A., Al Zain, A. D., Trinder, P., Horn, P. & Roozemond, D., Easy composition of symbolic computation software: a new lingua franca for symbolic computation. 2010, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ACM, p. 339-346 8 p. (ISSAC ’10).
  13. Martins, M. M., & Pfeiffer, M. J. (2018). Francy – an interactive discrete mathematics framework for GAP. In J. H. Davenport, M. Kauers, G. Labahn, & J. Urban (Eds.), Mathematical Software – ICMS 2018: 6th International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings (pp. 352-358). (Lecture Notes in Computer Science (Theoretical Computer Science and General Issues); Vol. 10931). Springer.


  1. de Graaf, W. A.Lie algebras: theory and algorithmsNorth-Holland Publishing Co., AmsterdamNorth-Holland Mathematical Library56 (2000), xii+393 pages.

PhD theses

  1. Araújo, I. M.Presentations for semigroup constructions and related computational methodsPh.D. thesisUniversity of St Andrews (2000).
  2. Assmann, B., Applications of Lie methods to computations with polycyclic groupsPh.D. thesisUniversity of St Andrews (2007).
  3. Coutts, H.Topics in Computational Group Theory: Primitive permutation groups and matrix group normalisersPh.D. thesisUniversity of St Andrews (2010).
  4. Cutting, A., Todd-Coxeter methods for inverse monoidsPh.D. thesisUniversity of St Andrews (2001).
  5. Distler, A., Classification and enumeration of finite semigroups. Ph.D. thesisUniversity of St Andrews (2010).
  6. Hoffmann, R., On dots in boxes, or Permutation pattern classes and regular languagesPh.D. thesisUniversity of St Andrews (2015).
  7. Torpey, M., Semigroup congruences : computational techniques and theoretical applicationsPh.D. thesisUniversity of St Andrews (2019).
  8. Wilson, W., Computational techniques in finite semigroup theoryPh.D. thesisUniversity of St Andrews (2019).

Other publications

  1. Freundt, S., Horn, P., Konovalov, A., Linton, S. A. & Roozemond, D., Symbolic Computation Software Composability Protocol (SCSCP) specification, Version 1.3, 2009, 26 p.
  2. Konovalov, A., Torpey, M., Jefferson, C. et al. Programming with GAP (Software Carpentry-style lesson). Version v3.0, August 2019. Zenodo.

Before 2000:

  1. de Graaf, W. A.Using Cartan subalgebras to calculate nilradicals and Levi subalgebras of Lie algebrasJ. Pure Appl. Algebra139 (1-3) (1999), 25–39 (Effective methods in algebraic geometry (Saint-Malo, 1998)).
  2. de Graaf, W. A. and Wisliceny, J.Constructing bases of finitely presented Lie algebras using Gröbner bases in free algebras, in Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC)ACM, New York (1999), 37–43.
  3. Hulpke, A.Computing subgroups invariant under a set of automorphismsJ. Symbolic Comput.27 (4) (1999), 415–427.
  4. Linton, S. A., Pfeiffer, G., Robertson, E. F., and Ruškuc, N.Groups and actions in transformation semigroupsMath. Z.228 (3) (1998), 435–450.
  5. Wegner, A., The construction of finite soluble factor groups of finitely presented groups and its applicationPh.D. thesisUniversity of St Andrews (1992).